Строение Галактики

Просмотров : 4927

Строение Галактики


Строение Галактики
Изучение характера распределения звезд разных типов в Галактике показало, что наш звездный «остров» имеет сложное строение и состоит из нескольких проникающих друг в друга подсистем.
Молодые и яркие звезды вместе с облаками межзвездного газа и космической пыли образуют плоский диск. Здесь же сосредоточены белые карлики, планетарные туманности и звезды, взрывающиеся как сверхновые. В галактическом диске встречаются звезды и типа нашего Солнца, имеющие возраст 5—6 млрд лет и содержащие до 4% тяжелых химических элементов. Плотность звезд заметно убывает от центра диска к его окраинам.
В центральной части галактического диска имеется шарообразное утолщение. Внутри этого утолщения и «прячется» ядро Галактики, которое скрыто от нас облаками межзвездной пыли. Первое проникновение в тайны галактического ядра совершили пулковский астроном Александр Александрович Калиняк (1905—1983) и крымский — Владимир Борисович Никонов. Летом 1948 года в Симеизе совместно с московским физиком Валерьяном Ивановичем Красовским они получили первую фотографию ядра Галактики. Решить эту задачу им помогла инфракрасная астрономия: с помощью электронно-оптического преобразователя (Электронно-оптический преобразователь — фотоэлектрический прибор, который превращает невидимые инфракрасные лучи в лучи, видимые глазом и действующие на фотографическую пластику) невидимое ядро было заснято в инфракрасных лучах, обладающих большем проникающей способностью, чем лучи видимые. Они-то и пробили пылевую завесу.
Но это было только начало штурма галактического ядра. К его исследованиям вскоре подключились радиоастрономы. Они установили, что в диапазоне метровых волн ядро «светит» настолько ярко, что затмевает радиоизлучение спокойного Солнца! Было обнаружено также мощное истечение газа из центральных областей Галактики. По-видимому, в ее ядре происходят исключительно бурные процессы.
Наиболее интересные результаты были получены при исследовании центра нашей Галактики с помощью телескопа АРТ-П, установленного на орбитальной обсерватории «Гранат». Оказалось, что оттуда исходит не только поток радиоволн, но и рентгеновское излучение, и гамма-всплески. Один из самых интересных рентгеновских объектов в этой области неба, хотя далеко не самый яркий, — знаменитый Стрелец А, совпадающий с динамическим центром Галактики. Это и уникальный источник мощного радиоизлучения. Предполагается, что здесь находится сверхмассивная черная дыра с массой около 2 млн солнечных масс. Но гипотеза о сверхмассивной черной дыре, расположенной вблизи центра Галактики, еще не получила веских доказательств в свою пользу.
Плоский диск как бы погружен в сферическую составляющую Галактики, или гало. «Население» гало представлено преимущественно старыми и слабыми по блеску звездами. Здесь мы видим шаровые звездные скопления, красные сверхгиганты. Они разбросаны почти по всему объему сплюснутого гало вплоть до расстояний в 10 тыс. пк (примерно 30 тыс. световых лет) от галактической плоскости. В сферическую подсистему Галактики входят и звезды центрального утолщения — балджа. Газ и пыль в гало практически отсутствуют. Плотность звезд нарастает к центру Галактики. Масса гало приближается к массе диска.
Возраст шаровых скоплений достигает 13—15 млрд лет. Это самые старые образования в Галактике - ровесники самой звездной системы (Сейчас этот возраст, как и возраст всей наблюдаемoй нами Вселенной, пересматривается в сторону уменьшения).
Как видим, в зависимости от возраста звезды по-разному распределены в галактическом пространстве: старые заполняют сферический объем, молодые собраны в тонком диске.
С возрастными различиями звезд связаны различия и в их химическом составе. Наиболее старые светила содержат тяжелых химических элементов (тяжелее гелия) примерно в 100 раз меньше, чем Солнце. Стоит отметить, что для образования планет и зарождения жизни крайне необходимы тяжелые химические элементы. Поэтому вряд ли могли возникнуть планеты у звезд гало.
Важным шагом в изучении Галактики было обнаружение ее вращения вокруг оси, перпендикулярной к средней галактической плоскости. В этом вращении участвуют все звезды диска и газопылевые туманности. Скорость движения звезд вокруг галактического центра по мере удаления oт него сначала возрастает и достигает наибольшего значения (примерно 220 км/с) в окрестностях Солнца, а к краю Галактики медленно убывает. По этой скорости и расстоянию Солнца от центра Галактики, равному 8,5 кик, или около 28 тыс. световых лет, нетрудно вычислить период обращения Солнца. Он составляет около 230 млн. лет и называется галактическим годом.
По периоду обращения Солнца можно приближенно оцепить массу Галактики — диска имеете с гало. Для этого достаточно воспользоваться третьим обобщенным законом Кеплера. Оказалось, что она равна примерно 250 млрд масс Солнца.
Все звезды в Галактике связаны взаимным тяготением. Это служит надежной гарантией устойчивости звездной системы во времени.
Очень многое о строении и структуре нашей Галактики удалось узнать в результате изучения ближайших к нам больших звездных систем, таких как знаменитая Туманность Андромеды, обладающих четко выраженной спиральной структурой. Поэтому было разумно предположить, что наша Галактика тоже имеет спиральные ветви. Но как их распознать в бледном сиянии Млечного Пути? Ведь мы наблюдаем Галактику изнутри. Различные структуры галактического диска проецируются друг на друга, а многое прости скрыто от нас пылевыми облаками. И все-таки данная проблема получила оригинальное решение.
В 1951 году исследователи Вселённой сделали важное открытие: на волне 21 см они обнаружили сильный постоянным радиосигнал и прозвали его «песней водорода». Правда, открытие это ни для кого не явилось неожиданностью. Теоретически было уже предсказано, что нейтральный межзвездный водород должен «звучать» именно на такой волне. И. «вслушиваясь» в мелодию этой «песни», радиоастрономы смогли проникнуть за завесу межзвездной пыли и приступить к изучению структуры галактического диска.
Исследование излучения межзвездного газа в радиолинии водорода 21 см позволило установитъ ею распределение в пространстве. Оказалось, что уплотнения водорода действительно образуют спиральный узор. Постепенно удалось построить спиральную структуру для значительной части Галактики. Спиральные ветви, или рукава, вдоль которых группируются молодые горячие звезды отходят от центрального сгущения. Части трех рукавов хорошо прослеживаются в Орионе, Персее и Стрельце. В одном из узлов Орионова рукава, на краю Галактики, находится Солнечная система. Спиральные ветви закручиваются, то есть направление вращения Галактики совпадает с направлением от конца ветви к галактическому ядру.
Таким образом, если наблюдать нашу Галактику плашмя, то мы увидели бы, как из ее ядра вытекают спиральные ветви. Огибая центральное сгущение, расширяясь и разветвляясь, они теряют свою яркость, и постепенно след их пропадает.
Если ознакомиться с цветной фотографией Галактики, то нельзя не отметить, казалось бы, странное распределение на снимке цветов: ядро желтое, спирали — голубые! Но мы уже знаем, что, чем горячее звезда, тем она голубей. Последнее означает, что наиболее горячие звезды находятся в спиралях.
Газовый галактический диск пронизан силовыми линиями магнитного поля Галактики. Магнитное поле препятствует движению ионизованного газа поперек силовых линий, но не мешает ему распространяться вдоль них.
Магнитное поле не только влияет на движение межзвездного газа. Оно удерживает в Галактике космические лучи, возникающие при вспышках сверхновых. Эти лучи состоят из заряженных частиц, движущихся со скоростями, близкими к скорости света. В основном это протоны (ядра атомов водорода) с добавкой альфа-частиц (ядер гелия) и электронов и ничтожной примесью ядер атомов лития, углерода, азота, кислорода, железа и других более тяжелых элементов А так как силовые линии магнитного поля имеют довольно сложную конфигурацию, то космическим лучам приходится долго «петлять» по всему объему Галактики, прежде чем им удастся вырваться наружу — в межгалактическое пространство. Плотность энергии космических лучей в расчете на единицу объема Галактики примерно равна плотности энергии излучения звезд.
Магнитное поле Галактики тормозит быстрые релятивистские электроны. Это вызывает так называемое синхротронное (нетепловое) радиоизлучение на метровых волнах. Оно приходит к нам буквально со всех сторон неба. В противоположность этому нейтральный водород, сконцентрированный вблизи галактической плоскости, подает свой «радиоголос» только из зоны Млечного Пути.
В последние годы выяснилось, что плоский галактический диск и окружающее eго гало погружены в очень разреженную корону, которая является третьим главным структурным элементом Галактики. Полная масса короны в несколько раз превышает суммарную массу всех звезд Галактики. Она проявляет себя тяготением, но не излучает света, и в ней пе обнаружено ни звезд, ни газовых облаков.


Теги: Строение Галактики

Комментариев: 0 | Категория: ---
Вернуться
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Форма входа

Реклама

Популярные статьи

Наша планета Земля

Полезные статьи

Календарь

«    Август 2017    »
ПнВтСрЧтПтСбВс
 123456
78910111213
14151617181920
21222324252627
28293031